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ABSTRACT

Our current understanding of ultraluminous infrared galaxies suggest that

they are recent galaxy mergers in which much of the gas in the former spiral

disks, particularly that located at distances less than 5 kpc from each of the

pre-merger nuclei, has fallen into a common center, triggering a huge starburst

phenomenon. This large nuclear concentration of molecular gas has been de-

tected by many groups, and estimates of molecular mass and density have been

made. Not surprisingly, these estimates were found to be orders of magnitude

larger than the corresponding values found in our Galaxy. In this paper, a self-

consistent model of the high energy emission of the super-starburst galaxy Arp

220 is presented. The model also provides an estimate of the radio emission

from each of the components of the central region of the galaxy (western and

eastern extreme starbursts, and molecular disk). The predicted radio spectrum

is found as a result of the synchrotron and free-free emission, and absorption, of

the primary and secondary steady population of electrons and positrons. The

latter is output of charged pion decay and knock-on leptonic production, subject

to a full set of losses in the interstellar medium. The resulting radio spectrum

is in agreement with sub-arcsec radio observations, what allows to estimate the

magnetic field. In addition, the FIR emission is modeled with dust emissivity,

and the computed FIR photon density is used as a target for inverse Compton

process as well as to give account of losses in the γ-ray scape. Bremsstrahlung

emission and neutral pion decay are also computed, and the γ-ray spectrum is

finally predicted. Future possible observations with GLAST, and the ground

based Cherenkov telescopes are discussed.

Subject headings: γ-rays: theory, gamma rays: observations, galaxies: starburst,

infrared: galaxies, radio continuum: galaxies, galaxies: magnetic fields, galaxies:

individual (Arp 220)
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1. Introduction

In a recent letter (Torres et al. 2004), it was shown that some luminous and ultra-

luminous infrared galaxies (LIRGs and ULIRGs) are plausible sources for GLAST and the

next generation of Cherenkov telescopes (HESS, MAGIC, VERITAS). In order to show that,

the γ-ray flux output of neutral pion decay, under a set of reasonable and commonly used –

albeit numerous– simplifications, was computed. An obvious caveat of this earlier approach is

that it was not possible to precisely predict an spectrum of the ULIRGs-emitted high-energy

radiation, but rather only integrated fluxes. Also, correlation at lower frequencies was not

pursued. Here, a detailed, self-consistent model of the radio, IR, and γ-ray emission from Arp

220, the nearest ULIRG, minimizing as much as possible –based on current multiwavelength

observations– any freedom in parameter selection, is presented.

To that end, a set of numerical codes that allow the computation of multiwavelength

spectra from regions of star formation, molecular clouds, and other environments, was de-

veloped. Being this the first application of such program –whose validation was run against

previously published results– some of the details of what it implements are discussed in a

technical Appendix. The code set, dubbed Q-diffuse, solves the diffusion-loss equation

for electrons and protons, and finds the steady state distribution for these particles subject

to a complete set of losses in the interstellar medium (ISM). It computes secondaries from

hadronic interactions (neutral and charged pions) and Coulomb processes (electrons), and

gives account of the radiation or decay products that these particles produce. Secondary

particles (photons, muons, neutrinos, electrons, and positrons) that are in turn produced by

pion decay are calculated too, using a new set of paramaterizations of the differential cross

sections, developed recently by Blattnig et al. (2000). These parameterizations are discussed

here in some detail as well. Additional pieces of the code compute the dust emissivity, and

the IR-FIR photon density, which is used both as target for inverse Compton scattering and

to model the radiation at lower frequencies. Finally, opacities to γγ and γZ processes are

computed, as well as absorbed γ-ray fluxes, using the radiation transport equation.

Previous studies of diffuse high energy emission, and of electron and positron production,

with different levels of detail and aims, go back to the early years of γ-ray astronomy. A

summary of these first efforts can be found in the review paper by Fazio (1967) and in

the book by Guinzburg and Syrovatskii (1968). See also the pioneering works by Ramaty

& Lingenfelter (1968), Maraschi et al. (1968), and Stecker (1977), among many others.

Secondary particle computations have a similarly long, and obviously related history see,

e.g., Stecker (1969; 1973), Orth and Buffington (1976), and others quoted below. More

recent efforts, related mainly to the modelling of supernova remnants and the Galactic

center, include those of Schlickeiser (1982), see also his book and references quoted therein
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(Schlickeiser 2002), Aharonian et al. (1994), Drury et al. (1994), Atoyan et al. (1995),

Aharonian & Atoyan (1996), Moskalenko & Strong (1998), Strong & Moskalenko (1998),

Markoff et al. (1999), and Fatuzzo & Melia (2003); although making here a comprehensive

list is not intended. Here, the general ideas used by Paglione et al. (1996) and Blom et

al. (1999), when modelling nearby starbursts galaxies, are followed. These, in turn, closely

track Brown & Marscher’s (1977) and Marscher & Brown’s (1978), regarding their studies

of close molecular clouds. The current implementation seems to introduce some further

improvements. Apart from using different parameterizations for pion cross sections, which

were argued to better agree with experiments, as mentioned above, the code set uses the

full inverse Compton Klein-Nishina cross section, computes secondaries without resorting

to parameterizations which are valid only for Earth-like cosmic ray (CR) intensities, fixes

the photon target for Compton scattering starting from modelling of the observations in the

FIR, and considers opacities to γ-ray scape.

The rest of this paper is organized as follows. In the next Section, LIRGs and ULIRGs as

γ-ray sources are discussed. Section 3 is an account of Arp 220 phenomenology. The descrip-

tion of the dust emission model and the supernova explosion rates that were implemented

are discussed there as well. Section 4 is a discussion of the solution to the diffusion-loss

equation in a general case. Section 5 shows how emissivities of secondary particles were

computed. Some details of computation and explicit formulae incorporated into the code,

including those related to all losses, opacities, and radiation transport, are given in the Ap-

pendix. Section 6 discusses the steady distribution of particles in the different components

of Arp 220, together with the resulting radio and γ-ray spectrum. Some concluding remarks

are given at the end.

2. LIRGs & ULIRGs as γ-ray sources

ULIRGs are recent galaxy mergers in which much of the gas in the former spiral disks,

particularly that located at distances less than ∼ 5 kpc from each of the pre-merger nuclei,

has fallen into a common center, triggering a huge starburst phenomenon (see Sanders &

Mirabel 1996 for a review). The size of the inner regions of ULIRGs, where most of the gas is

found, can be as small as a few hundreds parsecs; there, an extreme molecular environment

is found.

This large nuclear concentration of molecular gas has been detected in the millimeter

lines of CO by many groups. Using Milky Way molecular clouds to calibrate the conversion

factor between CO luminosity and gas mass soon led to the paradox that most, if not all,

of the dynamical mass was gas (e.g., for Arp 220, see Scoville et al. 1991). In some extreme
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cases, the derived gas mass exceeded the dynamical mass estimation, which unambiguously

showed caveats in any of the assumptions. However, Downes et al. (1993) showed that in the

central regions of ULIRGs, much of the CO luminosity comes from an intercloud medium

that fills the whole volume, rather than from clouds bound by self gravity. Hence, the CO

luminosity of ULIRGs traces the geometric mean of the gas and the dynamical mass, rather

than just the gas. The Milky Way conversion factor, being relevant for an ensemble of giant

molecular clouds (GMCs) in an ordinary spiral galaxy, seems to overestimate the gas mass of

ULIRGs. Solomon et al. (1997), Downes & Solomon (1998), Bryant & Scoville (1999), and

Yao et al. (2003) have argued for that in the case of ULIRGs, conversion factors between gas

mass and CO luminosities can be ∼5 times smaller than for the Milky Way. Even with such

corrections, the amount of molecular gas in ULIRGs is huge, typically reaching 1010 M¯.

The existence of large masses of dense interstellar gas, if subject to intense bombardment

of energetic protons, suggests that all LIRGs may have γ-ray luminosities orders of magnitude

greater than normal galaxies. This assumption was explored by Torres et al. (2004), who

found that the expectation of LIRGs to shine at γ-rays is not automatically granted. It

is not only the amount of gas (actually, the amount of gas divided by the distance to its

location) what yields to detectability at high energies, but rather it is the amount of gas

that is found at high density, and thus that it is prone to form stars and be subject to

significant enhancements of cosmic rays. Using the HCN survey recently released by Gao &

Solomon (2004a,b), Torres et al. noted that there are a group of 7 LIRGs (out of 31 in that

sample) that, being gas-rich (i.e., CO-luminous) but having normal star formation efficiency

LIR/LCO (e.g., LHCN/LCO < 0.06), are not expected to be detected in γ-rays (at least under

the simple modelling explored by these authors). Some examples are NGC 1144, Mrk 1027,

NGC 6701, and Arp 55. These galaxies are using the huge molecular mass they have in

creating stars at a normal star formation rate (SFR). Cosmic ray enhancements are, most

likely, not high enough to lead to detection, given the distance to these objects.

Then, even when, a priori, they may appear far from Earth to be detected at high ener-

gies, perhaps it is the extreme environment of star-bursting ULIRGs the most appealing to

study. And one such galaxy stands alone among all others: Arp 220 (RAJ2000, DECJ2000=15

34 57.24, +23 30 11.2). Although LIRGs are the dominant population of extragalactic ob-

jects in the local (z < 0.3) universe at bolometric luminosities above L > 1011 L¯, they are

still relatively rare (Sanders & Mirabel 1996). The luminosity function of LIRGs suggest

that there should be only one object with LFIR > 1012 L¯ out to a redshift of 0.033. Indeed,

Arp 220 (z = 0.018) is the only ULIRG in the 100 Mpc sphere. As such, Arp 220 is probably

the best studied ULIRG.
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3. Arp 220

Arp 220’s center has two radio-continuum and two IR sources, separated by ∼ 1 arcsec

(e.g., Scoville et al. 1997, Downes et al. 1998, Soifer et al. 1999, Wiedner et al. 2002).

The two radio sources are extended and nonthermal (e.g., Sopp & Alexander 1991; Condon

et al. 1991; Baan & Haschick 1995), and likely produced by supernovae in the most active

star-forming regions (see below). CO line, cm, mm-, and sub-mm continuum (e.g., Downes

& Solomon 1998) as well as recent HCN line observations (e.g., Gao & Solomon 2004a,b)

are all consistent with these two sources being sites of extreme star formation and having

very high molecular densities. Arp 220 is also an OH megamaser galaxy, as first discover by

Baan et al. (1982). The 1.6 GHz continuum emission of Arp 220 has a double component

structure too, with the two components being separated by about 1 arcsec and located at

the same positions as the 1.4 GHz, the 4.8 GHz, and the 1.3 mm emission (see, e.g., Rovilos

et al. 2002, 2003). In the eastern nucleus, the position of the maser coincide with that of

the continuum. In the western one, the OH maser emission arises from regions north and

south from the continuum (Rovilos et al. 2002, 2003).

Different characteristics of the two extreme starbursts and the molecular disk, some

of which are used as input in our modelling, are given in Tables 1 and 2, as derived by

Downes and Solomon (1998). Other authors, particularly those reporting results with sub-

arcsec angular resolution (e.g., Soifer et al. 1999, Wiedner et al. 2002), while confirming the

general features of the modelling of the central region proposed by Downes and Solomon,

may present differences in the details. For instance, the densities quoted by Weidner et al.

(2002) are slightly larger than those used here. Sakamoto et al. (1999) have proposed, also

based on CO observations with sub-arcsec resolution, that the western and eastern nuclei are

not spherically symmetric but are counter-rotating, ∼ 100 pc disks, with ∼ 109 M¯ masses

(see their figure 5). This model seems to have some support in VLBI observations of OH

masers (Rovilos et al. 2003). Regarding the γ-ray emission from Arp 220, such changes in

geometry will not yield any significant change in the results, although would probably also

imply higher densities that those consider here. To fix the scenario on the conservative side,

Downes and Solomon’s (1998) results are adopted, and for consistency, their assumed value

of Arp 220 luminosity distance (72.3 Mpc) is also used. Modifications to the cosmological

model would produce an order 1% percent change in the results.

The assumed geometry of the central region of Arp 220 is sketched in Figure 1, not to

scale. The CO disk is inclined 40◦ from face-on, Arp 220-west (one of the extreme starbursts)

is assumed spherical, with a radius of 68 pc. Similarly, Arp 220-east has a radius of 110 pc.

The disk thickness is 90 pc. The rotational curve of the CO disk indicates a dynamical mass

of at least 12 × 109 M¯ interior to the outer disk radius, of 480 pc, which corresponds to
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Fig. 1.— Geometry and different components in the model of Arp 220. Two central spherical

nuclei are extreme regions of star formation, and co-rotate with the molecular disk.

the central bulge mass of a large spiral like the Milky Way. The gas mass in each of the

two extreme starburst nuclei is at least 6 × 108 M¯. Their individual FIR luminosities are

∼ 3 × 1011 L¯. About half of the Arp 220 FIR luminosity comes from the molecular disk.

The masses of the two extreme starbursts are negligible in comparison with the mass that

controls the motion of the molecular disk. Furthermore, the two nuclei of Arp 220 have

radial velocities indicating that they take part in the general disk rotation, i.e., that they

share the general rotation in the potential of the old bulge, and are dominated by the disk

gravity, not their self. There is no observational evidence –radio, infrared, or optical– that

they contain old stars, so that the estimated mass in new stars could just be the total mass

minus the gas mass (Downes & Solomon 1998). The gas density quoted in Table 1 and

2 corresponds only to estimates of molecular hydrogen, thus the total density ought to be

larger. The contribution of atomic hydrogen is to be considered subdominant, as it is in

the inner disk of the Milky Way (see e.g. Mirabel & Sanders 1988; 1989). The total nuclei

density is derived from the H2 number density estimation, taking into account heavier and

lighter species. Also, it is important to note that the models in the paper by Downes &

Solomon (1998) are for distributed gas, but there is denser gas in the star forming cores,

giving rise to HCN and CS lines. Most of the CO comes from the distributed medium, so

that total masses have to be corrected upwards (e.g. Gao & Solomon 2004a,b). Equally, the
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density might be higher that the estimate used here, perhaps especially in the disk. Thus,

from the point of view of target mass, our estimates of, for instance, neutral pion decay

γ-rays or charged pion decay electrons, could be regarded as a conservative estimation.

Additional evidence supporting the predominance of star forming processes in Arp 220,

as compared with what would be the influence of an active but hidden black hole, come

from the hard X-ray band/soft γ-ray bands. Dermer et al. (1997) have reported OSSE

observations of Arp 220, finding a 2σ upper limit in the 50-200 keV range (see below).

Previous hard X-ray limits on Arp 220, by HEAO-1 and Ginga (Rieke 1988) also ruled out

a bright hard X-ray source (> few × 10−11 erg cm−2 s−1). Iwasawa et al. (2001) reported

observations with Beppo-Sax, which detected X-ray emission up to 10 keV but imposed only

an upper limit at higher frequencies. It is also worth noticing that there is no strong Fe K

line detection from Arp 220, although a tentative detection of an emission line at 6.5 keV,

at the 2σ-level, has been made (Clements et al. 2002).

Starburst phenomena were used by Shioya, Trentham & Tanigushi (2001) and Iwasawa

et al. (2001) to explain the X-ray properties of Arp 220, although the existence of a heavily

obscured AGN is not yet ruled out. Chandra results (Clements et al. 2002) show that the

nuclear X-ray emission in Arp 220 is confined to a sub-kiloparsec scale region, in contrast

to other starburst galaxies. Its spectrum indicates that X-rays are more likely produced by

one or more low luminosity, heavily obscured, low mass AGN, or by several high luminosity

X-ray binaries, or ultra luminous X-ray sources, rather than by supernovae. Therefore the co-

existence of a subdominant AGN with a dominant starburst is still plausible. Of course, even

when a weak AGN would contribute now only with ∼ 1% to the bolometric luminosity, in the

dense nuclear region of Arp 220, the black hole is bound to grow and increase in luminosity

as the system evolves. Proof of the existence of a black hole in Arp 220 (or otherwise) is then

important in our understanding of the possible relationship between quasars and ULIRGs.

Table 1. Some properties of Arp 220’s extreme starbursts.

Property West East

Geometry sphere sphere

Radius [pc] 68 110

Average gas density (H2) [cm−3] 1.8× 104 8.0× 103

Luminosity (FIR) [L¯] 0.3× 1012 0.2× 1012
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Table 2. Some properties of Arp 220’s disk.

Property Value

Geometry cylinder

Thickness [pc] 90

Outer radius [pc] 480

Inclination from face-on 40o

Average gas density within the outer radius (H2) [cm−3] 1.2× 103

Luminosity (FIR) [L¯] 0.7× 1012

Table 3. Main symbols used in the paper, meaning, and units.

Symbol Meaning Unit

b(E) rates of energy loss GeV s−1

τ(E) confinement timescales s

Q(E) emissivities particles GeV−1 s−1 cm−3

N(E) distributions particles GeV−1 cm−3

J(E) intensities particles GeV−1 cm−2 s−1 sr−1

F (E) differential fluxes particles GeV−1 cm−2 s−1

F (E > Ē) integral fluxes above Ē particles cm−2 s−1
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3.1. The supernova rate in Arp 220

18 cm VLBI (3× 8 milliarcsec resolution) continuum imaging of Arp 220 has revealed the

existence of more than a dozen sources with 0.2−1.2 mJy fluxes (Smith et al. 1998), mostly

in the western nucleus. These compact radio sources were interpreted as supernova remnants.

This interpretation is consistent with a simple starburst model for the IR luminosity of Arp

220 (Smith et al. 1998b), having a constant SFR in the range 50−100 M¯ yr−1, and a

supernova explosion rate in the range R ∼ 1.75− 3.5 yr−1.1 Smith et al. (1998) suggest the

adoption of a supernova explosion rate of 2 yr−1, with an uncertainty that could make it be

twice this value. A radio supernova would thus appear in Arp 220 at least once every six

months, and several individual SNRs would be visible at any given moment.2

A detailed model of the hidden nucleus was constructed using starburst99 (Shioya,

Trentham & Tanigushi 2001) for which the star formation rate derived was 267 M¯ yr−1; 160

M¯ yr−1 [107 M¯ yr−1] of which correspond only to the western [eastern] extreme starburst.

For equal assumptions on the IMF slope, the lower and upper limits on star masses, and

the mass needed for a star to evolve to a supernova, as compared with Smith et al.’s (1998)

work, a supernova rate of ∼ 4 yr−1 is derived using this model, which is consistent with, but

at the upper end of, previous estimates.

Van Buren and Greenhouse (1994) developed, starting from Chevalier’s (1982) model for

radio emission from supenova blast waves expanding into the ejecta of their precursor stars,

a direct relationship between the FIR luminosity and the rate of supernova explosions. The

result is R = 2.3× 10−12LFIR/L¯ yr−1. They proved that the supernova rate resulting from

this relation was consistent with that derived from the star formation rates in M82, NGC 253,

and other galaxies. In the case of ULIRGs, Manucci et al. (2003) derived a similar expression.

The latter authors found, by studying a sample of 46 LIRGs and detecting 4 supernovae,

that the supernova rate can be approximately given by R = (2.4±0.1)×10−12LFIR/L¯ yr−1,

in nice agreement with Van Buren and Grennhouse’s results. Mattila and Meikle (2001) have

also obtained a similar value for the proportionality factor.

In the case of Arp 220, the total so-computed supernova rate is R = 2.8 ± 0.1 yr−1,

1The webpages of the Arecibo observatory further report that in November 2002, a new VLBI experiment
was conducted by Lonsdale et al. and a preliminary continuum image has resulted in the detection of roughly
30 supernova remnants candidates in Arp 220, about 10 of which lie in the eastern nucleus. This would be
direct evidence that intense star formation is occurring in both nuclei, and not just the western one.

2A 2001 conference report by Lonsdale et al., while confirming that the previously referred radio sources
are indeed supernovae, suggest that the explosion rate could be smaller than the previous estimate. Appar-
ently, there is yet no published report after the 2002 observations.
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which is compatible with previous results. The mentioned relationship between LFIR and R
gives then the possibility of distributing the Arp 220 total supernova rate into the different

components (i.e., disk, western and eastern nuclei) according to their weight in the FIR

emission, and this is the approach followed here. As shown below, this rate, together with

the measured geometry of the system, fixes the primary injection proton distribution. As

compared with Local Group Galaxies, the supernova rate in Arp 220 is ∼ 300 times larger

(e.g., see the compilation produced by Pavlidou and Fields 2001, where the maximum rate

occurs for M31, and it is 0.9 explosions per century).

3.2. Dust emission

The continuum emission from Arp 220, at wavelengths between ∼ 1 cm and ∼ 10

microns, was measured by Woody et al. (1989), Eales et al. (1989), Scoville et al. (1991),

Carico et al. (1992), and Rigopoulou (1996), among others. These observations did not

distinguish, due to angular resolution, the different geometrical components described in

Figure 1, and were fitted with different models for dust emission. In particular, Scoville et

al. (1991) already found that the continuum emission was mainly produced thermally, by

dust, and thus that it could be modelled with a spectrum having an emissivity law νσB(ε, T ).

Later, already with arcsec imaging, Scoville et al. (1997), Downes and Solomon (1998), and

Soifer et al. (1999) distinguished the contribution of the two extreme starburst regions,

and obtained results compatible with previous measurements. However, the dust emission

modelling is strongly dependent on sizes, temperatures, and emissivity indices of each of the

emission regions, so that for a small variation in any of these parameters, large changes in

the predicted fluxes of the components may result. This produces a modelling degeneracy,

acknowledged already by Soifer et al. (1999). They provide a multicomponent fit for the

dust emission of Arp 220, and several possible scenarios, all compatible with observations,

were presented. These scenarios were recently re-analyzed by Gonzalez-Alfonso et al. (2004),

on the light of ISO-LWS observations.

Entering into too many details to represent the dust emission would increase the number

of parameters without a way of distinguishing between different models with data now at

hand. In addition, since forthcoming γ-ray missions and γ-ray telescopes will not resolve the

different components, it is not really possible to relate subarcsec FIR modelling with arcmin

γ-ray observations. In the spirit of Scoville et al. (1991), the simplest possible scenario is

herein adopted; i.e., the FIR emission is produced by dust in each of the components, and

that it is radiated with a single temperature and emissivity law. The model (sum of the

three contributions) derived to fit the data (σ = 1.5, T = 42.2 K, see Appendix for details)
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Fig. 2.— Data points and dust emission model assumed in this paper for the IR-FIR radiation

from Arp 220. Data points come from literature quoted in the text, with typical errors of

∼20%. The theoretical curve is based on the assumption that the whole IR-FIR luminosity

is produced by dust located at each of the components, emitting with a single temperature

(42.2 K) and emissivity index (1.5).

provides an excellent description of the observations, as can be seen in Figure 2. Note that,

if anything, this model may underestimates slightly what would be the real photon density,

particularly in the molecular disk, what implies that this computation will not overestimate

the inverse Compton contribution. In any case, at high energies, in the dense environment

of Arp 220, inverse Compton emission is sub-dominant as compared with pion decay γ-rays

(see below).

Note that there are two points that deviates from the theoretical curve in Figure 2.

The first is at the lowest frequencies, where the dust emission model predicts less emission

than observed. Indeed, this behavior is correct, since at that frequency there is a non-

negligible non-thermal contribution coming from synchrotron radiation as well as a thermal

contribution coming from thermal bremsstrahlung, computed below. This makes for this

difference in the fit. At the highest frequencies, the dust emission predicts less emission than

observed too, which is also correct, since at high frequencies the source is optically thinner

and better described by a blackbody.
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4. Diffusion-loss equation

The general diffusion-loss equation is given by (see, e.g., Longair 1994, p. 279; Guinzburg

& Syrovatskii 1964, p. 296)

−D52 N(E) +
N(E)

τ(E)
− d

dE
[b(E)N(E)]−Q(E) = −∂N(E)

∂t
. (1)

In this equation, D is the scalar diffusion coefficient, Q(E) represents the source term ap-

propriate to the production of particles with energy E, τ(E) stands for the confinement

timescale, N(E) is the distribution of particles with energies in the range E and E + dE

per unit volume (see Table 3 for units), and b(E) = − (dE/dt) is the rate of loss of energy.

The functions b(E), τ(E), and Q(E) will then be different depending on the nature of the

particles (i.e., electrons – positrons, and protons, are subject to different kind of losses and

are also produced differently), but the form of the equation will be the same for both. Here,

two terms are to be neglected: in the steady state, ∂N(E)/∂t = 0, and the spatial depen-

dence is considered to be irrelevant, so that D 52 N(E) = 0. This is reasonably under the

assumption of a homogeneous distribution of sources.

Eq. (1) can be –formally– solved, as can be proven by direct differentiation, by using

the Green function

G(E, E ′) =
1

b(E)
exp

(
−

∫ E′

E

dy
1

τ(y)b(y)

)
, (2)

such that for any given source function, or emissivity, Q(E), the solution is

N(E) =

∫ Emax

E

dE ′Q(E ′)G(E, E ′). (3)

Note that the integral in E ′ is made on the primary energies which, after losses, produce

secondaries with energy E. In general, however, G(E,E ′) has not a close analytical expres-

sion, and neither does N(E). Numerical integration techniques are then needed to compute

Eq. (3).

Instead of directly assuming a steady state particle distribution, it is considered that

the latter is the result of an injection distribution being subject to losses and, eventually, to

secondary production, in the ISM. In general, the injection distribution may be defined to

a lesser degree of uncertainty when compared with the steady state one, since the former

can be directly linked to observations, e.g., to the supernova explosion rate. Such evolution

of the injection spectrum will be given as a solution of Eq. (1), with appropriate b(E) and

τ(E) functions.
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Fig. 3.— Example of the rate of energy loss for protons (left panel) and electrons (right

panel) considered in this work. Protons losses are mainly produced by ionization and pion

production. Both are proportional to the medium density, and this is factored out (in units

of cm−3). Electrons losses correspond to synchrotron and bremsstrahlung radiation, inverse

Compton scattering, and ionization. A set of random parameters is assumed for this example

–shown in the figure–, additionally to the assumption that the average density of the photon

target is ε̄ = 1 eV.

The total rate of energy loss herein considered for protons is given by the sum of Eq.

(17) or Eq. (18) and Eq. (22), involving ionization and pion decay, as it is discussed in the

Appendix. An example of these rates of energy loss is shown in Figure 3 (left panel). For

electrons, the total rate of energy loss considered is in turn given by the sum of equations Eq.

(23), (24), (25), and (28), involving ionization, inverse Compton scattering, bremsstrahlung,

and synchrotron radiation, as it is also discussed in the Appendix. These rates of energy loss

are shown in the right panel of Figure 3 for a particular choice of system parameters. In that

figure, the inverse Compton losses are computed in the Thomson approximation. The full

Klein-Nishina cross section is used while computing photon emission, and either Thomson

or extreme Klein-Nishina approximations, as needed, are used while computing losses. This

approach proves to be accurate, while significantly reduces the computational time.

The confinement timescale will be given by the characteristic escape time in a leaky box
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model (Berezinskii et al. 1992, p. 50-52 and 78)

τD =
R2

2D(E)
=

τ0

β(E/GeV)µ
, (4)

where β is the velocity of the particle in units of c, R is the spatial extent of the region from

where particles diffuse away, and D(E) is the energy-dependent diffusion coefficient, whose

dependence is assumed ∝ Eµ, with µ ∼ 0.5. τ0 is the characteristic escape time for ∼ 1 GeV

electrons, for which different values can be assumed (e.g., 0.1, 1.0, 10.0 Myr). Note that,

whereas the form of τD is assumed the same for both protons and electrons, its value at a

fixed energy is only the same for particles with equal Lorentz factors (and thus equal β).

The total escape timescale will also take into account that particles can be carried away by

the collective effect of stellar winds and supernovae. In general, it is reasonable to suppose

that this timescale, dubbed τc, is within one or two orders of magnitude of τ0. τc is indeed

∼ R/V , where V is the collective wind velocity. Thus, in general,

τ−1(Ep) = τ−1
o β

(
E

GeV

)µ

+ τc
−1. (5)

Note that if Q(E) is a power law, N(E) scales linearly with its normalization. However,

there is no immediate scaling property with the density of the ISM, which enters differently

into the several expressions of losses that conform b(E).

5. Computation of secondaries

For the production of secondary electrons, only knock-on and pion processes are taken

into account. These processes dominate by more than an order of magnitude the production

of electrons at low and high energies, respectively, when compared with neutron beta decay

(see, e.g., Marscher & Brown 1978 and Morfill 1982 for discussions on this issue).

5.1. Electrons from knock-on (or Coulomb) interactions

Knock-on (or Coulomb) collisions are interactions in which the proton CR transfers an

energy far in excess of the typical binding energy of atomic electrons, so producing low-

energy relativistic electrons. The cross section for knock-on production was calculated by

Bhaba (1938) and subsequently analyzed by Brunstein (1965) and Abraham et al. (1966),

among others. The differential probability for the production of an electron of energy Ee

and corresponding Lorentz factor Γe = Ee/mec
2, within an interval (Γe − dΓe, Γe + dΓe),
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produced by the collision between a CR of particle species j, and energy factor Γj and a

target of charge Zi and atomic number Ai is, in units of grammage,

Φ(Γe, Γj)dΓe =


2πN0Zir

2
eZ

2
j

Ai(1− Γ−2
j )


 1

(Γe − 1)2
−

s
(
Γj + s2+1

2s

)

(Γe − 1)Γ2
j

+
s2

2Γ2
j





 dΓe cm2 g−1. (6)

Here N0 is the Avogadro’s number, re = e2/mc2 = 2.82 × 10−13 cm is the classical radius

of the electron, and s = me/(Aimp) ∼ 1/1836 (see below). Note that the probability for

interaction is proportional to Zi/Ai. Then, it will suffice to assume that the interstellar

medium is 90% hydrogen and 10% Helium and neglect the contribution of higher atomic

numbers. This approximation introduces negligible error. Contributions by various nuclei

in the colliding CR population are more important, since the probability for interaction is

proportional to Z2
j . If the total contribution of all primaries with charge Z ≥ 2 relative to

that of protons is ∼ 0.75, then
∑

i

∑
j Φ(Γe, Γj) ∼ 1.75 Φ(Γe, Γp).

The maximum transferable energy in this kind of collisions is (e.g., Abraham et al. 1966)

Γmax = 1 +
(
Γ2

p − 1
)
/{s (Γp + [s2 + 1/2s])}. Thus, the maximum possible energy is limited

only by the maximum value of Γp, while the minimum proton Lorentz factor that is needed

to generate an electron of energy Ee is fixed by solving the inequality Γe ≤ Γmax. The result

is that Γp ≥ Γ1, with Γ1 = [1/2]s(Γe − 1) +
√

1 + 1
2
(1 + s2)(Γe − 1) + 1

4
s2(Γe − 1)2. With

this in mind, the source function for knock-on electrons to be considered in the diffusion-loss

equation is then given by

Qknock(Ee) ∼ 1.75 mp n 4π

∫

E1,p

Φ(Ee, Ep) Jp(Ep) dEp , (7)

where E1,p = Γ1 mp, Φ(Ee, Ep) = Φ(Γe, Γp)/me, i.e. energies, instead of Lorentz factors, are

used to write the final integral, and Jp is the CR proton intensity (Jp(E) = (cβ/4π)N(E)).3

If the CR intensity is described by a power law whose exponent is exactly an integer

or half of an integer, i.e., −2,−2.5,−3, etc., lengthy analytical expressions for the knock-on

source function can be obtained. This is no longer true for generic power laws. Examples

of the results for the computation of the knock-on source function are given in Figure 4.

As it is shown there, and was first proposed by Abraham et al. (1966), the behavior of the

3Note that for the computation of secondary electrons, sometimes it is more convenient to use Q(Γ), the
emissivity as a function of the electron Lorentz factor, instead of Q(E). They are related by Q(Γ)dΓ =
Q(E)dE, then Q(Γ)-units are cm−2 s−1 sr−1 unit-Γ−1. In order to convert electron and positron emissivities
expressed as a function of Γ to those expressed as a function of energy, which are those entering into the
expression of the diffusion-loss equation adopted, one has then to divide by the electron mass. Note also
that the equality Jp(Γ)dΓ = Jp(E)dE holds. Similarly, the relationship between Φ(Ee, Ep) and Φ(Γe, Γp)
can be obtained.
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Fig. 4.— Left: Knock-on source function for different CR intensity Jp(Ep) = A(Ekin/GeV)α

protons cm−2 s−1 sr−1 GeV−1. We have normalized the source function by taking an ISM

density (n = 1 cm−3) and unit normalization of the incident proton spectrum, A=1. Curves

shown are, from top to bottom, the corresponding to α = −2.1,−2.5, and −2.7. Right:

Simple power law fit of the knock-on source function for α = −2.5. Similar fits can be

plotted for all values of α.

knock-on source function can be well represented by a power law of the form Qknock(Ee) ∼
constant × (Γe − 1)−βelectrons cm−3 s−1 GeV−1. An example of such a description can be

found in the right panel of Figure 4, where the spectrum obtained using Eq. (7) is superposed

to the fit.

5.2. γ-rays from neutral pion decays

The π0 emissivity resulting from an isotropic intensity of protons, Jp(Ep), interacting

with –fixed target– nuclei with number density n, through the reaction p + p → p + π0 →
p + 2γ, is given by (e.g., Stecker 1971)

Qπ0(Eπ0) = 4πn

∫

Eth(Eπ0 )

dEp Jp(Ep)
dσ(Eπ0 , Ep)

dEπ0

, (8)
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where Ep(Eπ0) is the minimum proton energy required to produce a pion with total energy

Eπ0 , and is determined through kinematical considerations. In addition, dσ(Eπ0 , Ep)/dEπ0

is the differential cross section for the production of a pion with energy Eπ0 in the lab frame

due to a collision of a CR proton of energy Ep with a hydrogen atom at rest. The γ-ray

emissivity is obtained from the neutral pion emissivity Qπ0 as

Qγ(Eγ)π = 2

∫

Emin
π0 (Eγ)

dEπ0

Qπ0(Eπ0)

(E2
π0 −m2

π0c4)1/2

= 2

∫

Emin
π0 (Eγ)

dEπ0

(E2
π0 −m2

π0c4)1/2
4πn

∫

Eth(Eπ0 )

dEp Jp(Ep)
dσ(Eπ0 , Ep)

dEπ0

, (9)

where Emin
π0 (Eγ) = Eγ + m2

π0c4/(4Eγ) is the minimum pion energy required to produce a

photon of energy Eγ (e.g., Stecker 1971).

5.2.1. Cross sections

An accurate knowledge of the differential cross sections for pion production becomes

very important to estimate the γ-ray emissivity. Recently, Blattnig et al. (2000) devel-

oped parameterizations of the differential cross sections regulating the production of neutral

and charged pions. On one hand, Blattnig et al. have presented a parameterization of the

Stephens and Badhwar’s (1981) model by numerically integrating the Lorentz-invariant dif-

ferential cross section (LIDCS).4 The expression of such parameterization is divided into two

4The invariant single-particle distribution is defined by f(AB → CX) ≡ Ec
d3σ
d3pc

≡ E d3σ
d3p = E

p2
d3σ

dpdΩ where
d3σ/d3pc is the differential cross-section (i.e. the probability per unit incident flux) for detecting a particle
C within the phase-space volume element d3pc. A and B are the initial colliding particles, C is the produced
particle of interest, and X represents all other particles produced in the collision. E is the total energy of
the produced particle C, and Ω is the solid angle. This quantity is invariant under Lorentz transformations
and is called LIDCS. LIDCSs for inclusive pion production in proton-proton collisions contain dependences
on the energy of the colliding protons (through the energy of the center of mass in the collision

√
s), on

the energy of the produced pion (whose kinetic energy is Tπ), and on the scattering angle of the pion (θ).
Total cross sections, σ, which depend only on

√
s, and spectral (or differential) cross sections, dσ/dE, which

depend on
√

s and Tπ, can be extracted from the LIDCS by integration. If azimuthal symmetry is assumed,
these cross sections are dσ

dE = 2πp
∫ θmax

0
dθE d3σ

d3p sin θ, and σ = 2π
∫ θmax

0
dθ

∫ pmax

pmin
dpE d3σ

d3p
p2 sin θ√
p2+m2

π

, where

θmax, pmax, and pmin are the extrema of the scattering angle and momentum of the pion respectively, and
mπ is the rest mass of the pion. These extrema are determined by kinematic considerations (see Blattnig
et al. 2000 for details). Then, starting from different LIDCS parameterizations it is possible to integrate
these over the kinematics to obtain the corresponding parameterizations for the total and differential cross
sections. The accuracy of the latter forms will solely depend on the accuracy of the parameterizations of the
LIDCS.
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Fig. 5.— Left: π0 and γ-emissivities computed using Blattnig et al.’s (2000) and Stephen and

Badhwar’s (1981) parameterizations. Right: Discrepancies between cross section models are

shown as the ratio of the emissivities of secondary neutral particles. In both panels, n = 1

cm−3, and an Earth-like proton spectrum (∝ E−2.75) are assumed.

regions, depending on the (laboratory frame) proton energy, and is given in the Appendix.

On the other hand, Blattnig et al.’s new parameterization has, particularly in the case of

neutral pions, a much simpler analytical form. It is given by

dσ(Eπ0 , Ep)

dEπ0

= 10−27e(−5.8−1.82/(Ep−mp)0.4+13.5/(Eπ0−mπ0)0.2−4.5/(Eπ0−mπ0 )0.4)cm2 GeV−1 (10)

which ease the computation of the pion spectrum as compared to the isobaric (Stecker

1971) or scaling models (Stephens & Badwhars 1981), see, e.g. Dermer (1986), although yet

requiring numerical integration subroutines. [Recall that rest masses and energies must be

given, in the last equation, in units of GeV.]

Blattnig et al.’s parameterization were not yet applied to compute γ-ray emission. Then,

a brief analysis can prove useful. Specifically, the computed pion decay emissivity using

the new Blattnig et al.’s (2000) parameterization (Eq. 10) is herein compared with that

corresponding to the Stephen and Badhwar’s (1981) one, given in the Appendix, assuming
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the same proton injection and density as in Dermer (1986).5

Using Eq. (9), it is possible to see that under the Blattnig et al. new parameterization,

the number of pions produced at low (Eπ0 −mπ0 < 10−2 GeV) energies is significantly less

than that produced using the alternative model. The reason for the discrepancy between

the pion spectra strive from the integration of the LIDCS for pion production. Fig. 6

of Blattnig et al. (2000) shows that their new differential cross section parameterization

decreases rapidly at low energies and goes to approximately zero at 10 MeV. Fig. 5 of the

same paper shows that Stephen and Badhwar’s cross section, instead, is much larger at

very low pion energies (see Blattnig et al. 2000b for further details). Noteworthy, this fact,

however, does not substantially affect the γ-ray emission in the region of interest since to

produce a photon of energy ∼10−2 GeV, pions of minimum energy of ∼ 0.5 GeV are required,

and at these energies, the pion spectrum using both approaches agrees reasonable well (i.e.

the γ-ray spectrum is within an order of magnitude at all energies). This comparison is

shown in detail in the two panels of Figure 5.

Regrettably, it seems not possible to answer which parameterization is the correct one

at low energies with current experimental data (see Blattnig et al. 2000 for a discussion).

The problem being that the shapes of the two spectral distributions, (dσ(Eπ0 , Ep)/dEπ0),

look quite different even when both original LIDCSs have a similar fit to the data at low

transverse momentum of the produced pion, where the cross section is the greatest, and

that both integrate to the same total cross section. Notwithstanding, at high transverse

momentum, Stephen and Badwhars’s parameterization overpredicts the cross section for

several orders of magnitude, and Blattnig et al.’s form is preferred, (Eq. 10). Then, for

neutral pion decay computations, Eq. 10 is adopted in our computations. In the case of

charged pions, Badwhar’s (1977) LIDCS is considered the most reliable at all energies, and

then their corresponding spectral distributions are adopted, see below.

5.3. Electrons and positrons from charged pion decay

Positron production occurs through muon decay in the reactions p + p → p + π+ with

the pion then decaying as π+ → µ++νe + ν̄µ. Electron production occurs, similarly, through,

p + p → p + π− with the pion then decaying as π− → µ− + ν̄e + νµ. Considering first the

5The proton spectrum is the Earth-like one, Jp(Ep) = 2.2 E−2.75
p protons cm−2 s−1 sr−1 GeV−1 and

n = 1 cm−3. The resulting γ-ray emissivity is multiplied by 1.45 to give account of the contribution to the
pion spectrum produced in interactions with heavier nuclei (Dermer 1986). The maximum proton energy is
assumed as 10 TeV.
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Fig. 6.— Left: π±-emissivities produced using Blattnig et al.’s (2000) parameterizations of

Bhadwar et al.’s (1977) spectral distribution, dσ/dE. Right: e±-emissivities. In the case

of electrons, the total emissivity adds up that produced by knock-on interactions, which

dominates at low energies. In both panels, n = 1 cm−3, and an Earth-like proton spectrum

(∝ E−2.75) are assumed.

latter decays in the frame at rest with the pion, conservation of energy and momentum imply

pµ
′ =

(
Eµ

2′ −mµ
2
)1/2

= [mπ
2−mµ

2]/2mπ, where mµ,π are the masses of the muon and pion,

respectively, E are total energies and the prime is used to represent the pion rest frame. This

implies that the energy of the pion in such frame is Γµ
′ = Eµ

′/mµ = [mπ
2 +mµ

2]/[2mπmµ] ∼
1.04. The value of Γµ

′ implies, as long as the velocity of the pion in the laboratory frame is

not exceedingly small (Γπ > 1.04), that the muon is practically at rest in the rest frame of

the pion, and that as seen from the lab, Γµ ∼ Γπ. Then, per unit Lorentz factor, the muon

emissivity is equal to that of the pion

Qπ+(Γπ+) = Qµ+(Γµ+) ; Qπ−(Γπ−) = Qµ−(Γµ−). (11)

The charged pion emissivity resulting from an isotropic distribution of protons Jp(Ep) inter-

acting with –fixed target– nuclei found with number density n can be computed as that of

the neutral pions, by just changing the spectral distribution

Qπ±(Γπ±) = 4πn

∫

Γth(Γπ± )

dΓp Jp(Γp)
dσ(Γπ± , Γp)

dΓπ±
, (12)
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where Γp(Γπ±) is the minimum proton Lorentz factor required to produce a pion (either

positively or negatively charged) with Lorentz factor Γπ± . Thus, knowledge of the spectral

distribution dσ(Γπ± , Γp)/dΓπ± secures knowledge of the muon emissivity. Use of the new

parameterizations of the Bhadwar et al. (1977) LIDCS is done, quoted in the Appendix.

Figure 6, left panel, shows an example of the π+– and π−–emissivity. The electron and

positron emissivities are computed as a three-body decay process (see, e.g. Schlickheiser

2002, p. 115):

Qe±(Γe±) =

∫

1

Γe
′max

dΓe
′1
2

P (Γe
′)√

Γe
′2 − 1

∫ Γµ2

Γµ1

dΓµ

Qµ±(Γµ±)√
Γµ

2 − 1
. (13)

Here Γe
′max = 104, Γµ1,µ2 = Γe±Γe

′ ∓
√

Γe
′2 − 1

√
Γe

2 − 1, and the function P is P (Γe
′) =

2Γe
′2

[
3− 2Γe

′
Γe
′max

]
/(Γe

′max)3. Figure 6, right panel, shows an example of the e+– and e−–

emissivity, as implemented in the code. These results are compatible with previous compu-

tations.

6. Steady distributions, emissivities, and magnetic fields in Arp 220

6.1. Protons

The injection proton emissivity is here, following Bell (1978), assumed to be a power

law in proton kinetic energies, with index p,

Qinj(Ep, kin) = K

(
Ep, kin

GeV

)−p

, (14)

where K is a normalization constant.6 This normalization is to be obtained from the total

power transferred by supernovae into CRs kinetic energy within a given volume

∫ Ep, kin, max

Ep, kin, min

Qinj(Ep, kin)Ep, kindEp, kin = −K
E−p+2

p, kin, min

−p + 2
≡

∑
i ηiPRi

V
(15)

where it was assumed that p 6= 2, used the fact that Ep, kinmin ¿ Ep, kin,max in the second

equality, and defined Ri (
∑

iRi = R) as the rate of supernova explosions in the star forming

region being considered, V being its volume, that transfer a fraction ηi of the supernova

6Actually, this expression is strictly valid for proton Lorentz factors much larger than 1. However, it
differs from the exact expression at very low energies, Eq. (5) of Bell (1978), by less than a factor of 3, at
most, what produces an overall negligible difference.
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explosion power (P ∼ 1051 erg) into CRs. The summation over i takes into account that

not all supernovae will transfer the same amount of power into CRs (alternatively, that not

all supernovae will release the same power). The rate of power transfer is assumed to be

in the range 0.05 . ηi . 0.25 (e.g., Torres et al. 2003 and references therein), uniformly

distributed. Then, taking a ten-piece histogram,
∑

i ηiRi = 0.165R. Note that Ep, kin,min is

also fixed by requiring that the minimum kinetic proton energy with which a CR escapes

from a shock front be larger than 2mpv
2
s (Bell 1978). For shock velocities of the order of

103−4 km s−1, this is in the range of a few MeV. A value of 10 MeV is taken to fix numerical

constants, although its precise value is not a relevant parameter in this problem.

These assumptions imply that the injection is fixed as

Qinj(Ep) =

[P ×∑
i ηiRi × V −1

GeV s−1 cm−3

]
[p− 2]

[
Ep, kin, min

GeV

]p−2[
Ep −mp

GeV

]−p

GeV−1 cm−3 s−1. (16)

Further, it is assumed that the diffusion timescale is proportional to τo = 1 Myr for the

extreme starburst regions, and to τo = 10 Myr for the much larger volume occupied by the

disk. A similar assumption was made for the disk of NGC 253 (Paglione et al. 1996). Note

in addition that the shorter residence timescale for the extreme starburst regions actually

makes for a conservative assumption: if erring, it would be (slightly) underestimating the

γ-ray flux. The numerical solution of the diffusion-loss equation for protons, subject to the

losses described in the Appendix, is shown in Figure 7. Ionization (pion) losses dominates at

low (high) energy, and this change in the dominant mechanism for the energy loss produces

the kink that appears in the curves of Figure 7 around a kinetic energy of 300 MeV. Note that

the steady distribution in each of the components is similar (and actually, slightly larger for

the extreme starburst regions) despite of their different sizes. This implies that the number

of protons per unit energy is more than 50 times larger in the extreme starburst regions than

in the molecular disk.

6.2. Electrons and positrons

With the steady proton spectrum shown in Figure 7, left panel, the knock-on, and

pion-generated electron and positron emissivities are computed. To these emissivities, an

injection electron spectrum is also added, which is assumed as the proton injection times a

scaling factor; the inverse of the ratio between the number of protons and electrons, Np/Ne

(e.g., Bell 1978). This ratio is about 100 for the Galaxy, but could be smaller in star forming

regions, where there are multiple acceleration sites. For instance, Völk et al. (1989) obtain

Np/Ne ∼ 30 for M82. Np/Ne = 100 is assumed for the disk and Np/Ne = 50 is assumed for
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Fig. 7.— Left: Steady distribution of protons in each of the components of Arp 220. Right:

Example for a steady distribution of electrons and positrons in a western-like starburst (with

B = 10 mG). The contribution to the total steady distribution of the primary and secondary

electrons and positrons is separately shown. The horizontal rectangle shows the region of

electron kinetic energies where the steady distribution of secondary electrons is larger than

that of the primary electrons. It is in this region of energies where most of the synchrotron

radio emission is generated.

both of the starburst nuclei. These values stand for a conservative approach, e.g. the more

primary electrons, the larger the inverse Compton γ-ray emission.

With such emissivities, and using the diffusion-loss equation with corresponding losses,

the leptonic steady distribution is calculated. The inverse Compton scattering losses make

use of the photon density in the FIR derived above, and additionally, a value of magnetic

field is assumed to compute the influence of synchrotron losses. The difference between the

primary and secondary electrons steady distributions, for a western-like extreme starburst

with a magnetic field of 10 mG is shown in the right panel of Figure 7.
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Fig. 8.— Left: Influence of the magnetic field in the determination of the steady state

electron distribution in a western-like starburst region. Right: Final steady leptonic distri-

butions whose radio emission fit observations. It is with these distributions that leptonic

γ-ray emissivities are computed.

6.3. Radio emission and magnetic fields

The influence of the magnetic field upon the steady state electron distribution is shown

in Figure 8. The greater the field, the larger the synchrotron losses –what is particularly

visible at high energies, where synchrotron losses play a relevant role. Thus, the larger the

field the smaller the steady distribution. These effects evidently compete between each other

in determining the final radio flux. In order to model the different components of Arp 220,

the magnetic field is required to be such that the radio emission generated by the steady

electron distribution in each region (see Appendix) is in agreement with the observational

radio data. This is achieved by iterating the feedback between the choice of magnetic field,

the determination of the steady distribution, and the computation of radio flux [and at the

same time taking into account free-free emission and absorption processes, see Appendix].

These distributions are shown in the right panel of Figure 8. To reproduce the observational

radio data, it is important to note that whereas free-free emission is subdominant when

compared with the synchrotron flux density, free-free absorption plays a key role at low

frequencies, where it determines the opacity.



– 26 –

108 109 1010 1011 1012

101

102

 

 

Fl
ux

 D
en

si
ty

 [m
Jy

]

ν [Hz]

 1  2  3  4  5  6
 7  8  9  10  model

Fig. 9.— Radio and FIR emission of the different components of Arp 220. 1, 2, 3 (also com-

piled by Downes & Solomon 1998, see their figure 19), and 4 (see Figure 2) are observational

data points corresponding to the western and eastern nuclei, the disk, and the total FIR

flux density, respectively. The curves close to each of these set of points is the result of the

modelling. The curve with no observational data points nearby is the model prediction for

the molecular disk; its emission is summed into the thickest black curve, which is the result

of adding all components and the final prediction of the model for the radio emission.

The radio emission produced by these distributions is shown in Figure 9, together with

observational data. The beam size for the different data points varies (see, e.g., table 3 of

Soop & Alexander 1991) and unless in the cases of sub-arcsec observations, in general, the

beam contains a region larger than the one modelled herein. However, it is expected that

most of the radio emission comes from the central and more active regions of the galaxy, and

thus a reasonable model of the nuclear environment should reproduce most of the radiation.

The magnetic field and the free-free critical frequencies for each of the components are given

in Table 4. The solid curve in Figure 9 is, then, not a fit to the data, but the prediction of

the theoretical model with the chosen magnetic field. This prediction takes into account the

presence of secondary electrons, which, as can be seen in the right panel of Figure 7, dominate

the steady distribution in the energy range where most of the radio emission is produced.

The FIR observations and modelling shown in Figure 9 is that already presented in Figure

2: it can be noted here that the observational data point at ν ∼ 1011 Hz is accounted for



– 27 –

when considering the contribution of the non-thermal radio emission at that frequency.

The lowest frequency data point in each of the components is used to define the critical

frequency for the free-free opacity. This is a function of the emission measure and tempera-

ture, as commented in the Appendix. But since there is only one observational point at such

low values of ν, the reliability of the determination of the critical frequency is lower than

that of the magnetic field. The latter is the main responsible for the fixing of the steady

electron distribution and the prediction of the radio emission at higher frequencies, where

several observations are available for comparison.

To exemplify the uncertainty in the critical frequency determination, consider the west-

ern nucleus. In that case, the lowest frequency point could be thought of as being part of

the free-free opacity-produced decay of the radio emission curve, or as part the non-thermal

synchrotron trend, if the critical frequency is lower. An intermediate situation is adopted

here. This also influences the value of critical frequency adopted for the disk –forcing the

critical frequency in that case to be lower than that in the extreme starbursts in order to be

in agreement with the first data point of the total radio curve. For the eastern nucleus, it

is apparently clear that the first data point –obtained at high angular resolution– is already

opacity-dominated, since its value is less than the contiguous data at higher frequency. In

any case, both nuclei seem to have a relatively high critical frequency, particularly when

compared with the disk, what would be in agreement with them being stronger star forming

regions.7 The critical frequencies mentioned in Table 4 can be obtained with temperatures

between 5 and 10 ×103 K, and EM values between 104 and 107 pc cm−6, the smaller EM

corresponding to the disk. Similar values of critical frequencies, temperatures, and emission

measures were used to model the radio emission in the case of the starburst galaxy NGC

253 (Paglione et al. 1996).

Consider now the analysis of the magnetic field results, which appear, as said, to be

more stable against model degeneracy. It is worth noticing that not much is known about

the magnetic field in ULIRGs, except for upper limits (of ∼ 5 mG), obtained with Zeeman

splitting measurements of four southern OH megamaser galaxies (Killeen et al. 1996). This

study, being for a more active star-forming galaxy, is compatible with these estimates and

favor the ideas regarding the existence of such high fields in extreme starbursts (e.g., Smith

et al. 1998).

It is to be remarked that for both the western and eastern nuclei, the minimal energy

7In passing, note also that the turnover of the spectrum happens at too high a frequency as to be produced
by synchrotron self-absorption, e.g. by using the sizes of Arp 220 components, and Eq. 3.56 of Kembhavi
and Narlikar (2001).
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argument does not seem to hold.8 With the magnetic field strength given in Table 4, and

the relativistic steady state populations of Figures 7 (left panel) and 8 (right panel), only

the molecular disk is in magnetic energy equipartition. This appears to be a similar scenario

-although more extreme- to that found for the interacting galaxy NGC 2276, where the

magnetic field seems not in energy equipartition with cosmic rays either (Hummel & Beck

1995).

The magnetic field in the extreme starbursts is compatible with those measured nearby

supernova remnants in the Galaxy (Koralesky et al. 1998; Brogan et al. 2000), where field

strengths between 0.1 and 4 mG were found. These fields strengths were interpreted as being

an ambient magnetic field compressed by the supernova remnant. The same mechanism could

be thought of for Arp 220’s western and eastern nucleus. The disk magnetic field, in turn,

is compatible with the result for molecular clouds presented by Crutcher (1991), what is in

agreement with the disk itself being thought of as a gigantic molecular cloud with the gas

filling all the medium.

Similarly high values of magnetic fields (B > 800µ G) were necessary to produce the

observed collimated outflows in ULIRGs, and particularly in Arp 220, as a resultant of a

strong starburst environment (Gouveia Dal Pino & Medina Tanco 1999). Finally, the overall

magnetic field distribution bears some resemblance with our own Galactic Center. There, in a

few dense gas clouds about 2 pc north of the Galactic center, field strengths in the milligauss

range were derived from Zeeman measurements (see Beck 2001 for a review; Plante et al.

1994; Yusef-Zadeh et al. 1996). The average field in Sgr A complex is, in analogy with the

disk value, restricted to less than 0.4 mG (Reich 1994). The non-detection of the Zeeman

effect in the OH lines (Uchida and Güsten 1995) also indicates a relatively weak general

8The magnetic field strength in a galaxy produces an energy density that can be compared with the energy
density stored in the relativistic populations of particles. When these densities are similar, the system is
said to be under energy equipartition (see, e.g., Kembhavi & Narlikar 2001, p. 50).

Table 4. Parameters for radio modelling.

Component Magnetic Field Critical Frequency

western starburst 6.5 mG 0.38 GHz

eastern starburst 4.5 mG 2.86 GHz

disk 280 µG 0.07 GHz
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Fig. 10.— Left: Bremsstrahlung, inverse Compton, and pion decay emissivity of γ-rays in

the different components of Arp 220. Right: Differential fluxes without considering opacity

effects. The down-triangles are EGRET upper limits.

magnetic field into which bundles or clouds with strong fields are embedded.

6.4. γ-ray emissivity and first estimation of fluxes

In the left panel of Figure 10 the bremsstrahlung, inverse Compton, and pion decay γ-ray

emissivities of the different components of Arp 220, is shown. These results are derived for

the model which is in agreement with radio and IR-FIR observations. At energies above 100

MeV, pion decay γ-rays is the dominant contribution, as expected. Clearly, the emissivity

of high energy photons is the largest in the western extreme starburst, the most active

region of star formation. It is followed by the eastern nuclei, and in a subdominant role,

by the molecular disk. The differential flux, shown in the right panel of Figure 10 without

considering absorption effects, shows the effect of volume. The disk γ-ray flux is the largest,

and the nuclei are now subdominant. Nevertheless, only the western starburst provides more

than one fourth of the total γ-ray flux (similar to the weight of its contribution in the IR

band; although note, however that the total luminosity in the gamma-ray band is much less

than in the IR). The relative importance of the western and eastern nuclei in the total γ-ray
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Fig. 11.— Relative importance of the extreme starburst regions as compared with the total

γ-ray flux predicted from Arp 220. No opacities are herein considered although its inclusion

would not change this result.

radiation budget is shown in Figure 11. Upper limits to the differential photon flux from

Arp 220 are also shown in Figure 10. These limits were obtained from an analysis of 4 years

of EGRET data (see Cillis et al. 2004) and are in agreement with model predictions.

Before obtaining predictions for the fluxes above a given threshold energy, opacities to

γ-ray escape must be considered. This is done below.

6.5. γ-ray escape

The opacity to γγ pair production with the photon field which, at the same time, is tar-

get for inverse Compton processes can be computed as τ(Rc, Eγ)
γγ =

∫ ∫∞
Rc

n(ε)σe−e+(ε, Eγ)
γγdr dε,

where ε is the energy of the target photons, Eγ is the energy of the γ-ray in consideration,

Rc is the place where the γ-ray photon was created within the system, and σe−e+(ε, Eγ)
γγ =

(3σT /16)(1− β2)(2β(β2− 2) + (3− β4) ln((1 + β)/(1− β))), with β = (1− (mc2)2/(εEγ))
1/2

and σT being the Thomson cross section, is the cross section for γγ pair production (e.g.

Cox 1999, p.214). Note that the lower limit of the integral on ε in the expression for the



– 31 –

opacity is determined from the condition that the center of mass energy of the two col-

liding photons should be such that β > 0. The fact that the dust within the starburst

reprocesses the UV star radiation to the less energetic infrared photons implies that the

opacities to γγ process is significant only at the highest energies. It can be seen that

τ(Rc, Eγ)
γγ < τ(Eγ)

γγ
max = 2R

∫∞
0

n(ε)σe−e+(ε, Eγ)dε , since no source of opacity outside

the system under consideration is assumed, whose maximum linear size in the direction to

the observer is, in the case of a sphere of radius R, equal to 2R. For the molecular disk,

τ(Eγ)
γγ
max = (h/ cos i)

∫∞
0

n(ε)σe−e+(ε, Eγ)dε .

The opacity to pair production from the interaction of a γ-ray photon in the presence of

a nucleus of charge Z needs to be considered too. Its cross section in the completely screened

regime (Eγ/mc2 À 1/(αZ)) is independent of energy, and is given by (e.g. Cox 1999, p.213)

σγZ
e−e+ = (3αZ2σT /2π)(7/9 ln(183/Z1/3)− 1/54). At lower energies the relevant cross section

is that of the no-screening case, which is logarithmically dependent on energy, σγZ
e−e+ =

(3αZ2σT /2π)(7/9 ln(2Eγ/mc2)− 109/54), and matches the complete screening cross section

at around 0.5 GeV. Both of these expression are used to compute the opacity, depending on

Eγ. Use of the fact that the cross section, in typical ISM mixtures of H and He, is ∼ 1.3

times bigger than that of H with the same concentration, is also made and the opacity is

accordingly increased (see, e.g., Guinzburg & Syrovatskii 1964, p. 30).

From the properties deduced from the radio emission, i.e. the magnetic field and emis-

sion measure in each of Arp 220 components, it can be seen that Compton scattering and

attenuation in the magnetic field by one-photon pair production are negligible.

In Figure 12, both, the different contributions to the opacity from γγ and γZ, in the

case of the western starburst, and the total opacity for the three Arp 220 components are

shown. The western nucleus is subject to the biggest opacities, its value is ∼ 0.1 up to ∼ 4

TeV and then rapidly increases. The equation of radiation transport (see Appendix Eq. (51)

and (53)), for the molecular disk and extreme starburst regions, are then used to compute

the predicted γ-ray flux taking into account all absorption processes. The smallness of τmax

throughout most of the energy range implies that the correction factors to the fluxes are only

a few percent up to TeV energies (it is not possible to see the difference in a plot like that

presented in the right panel of Figure 10). In Figure 13 the effect of TeV photon absorption

in each of the components of Arp 220 is shown in detail. Note that the disk is subject to

relatively lower opacities than the eastern and western extreme starbursts. This is caused

mainly by a reduction of the photon target density (i.e. a reduction in τ γγ when compared

with the corresponding values found in the extreme star forming regions).
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Fig. 12.— Opacities to γ-ray scape in the different components of Arp 220 as a function of

energy. The highest energy is dominated by γγ processes, whereas γZ dominates the opacity

at low energies. Significant τmax are only encountered above 1 TeV, the inset shows the total,

and the contributions to the total opacity, in the case of the western nucleus of Arp 220 for

this range of energy.

6.6. Observability

The total predicted flux in γ-rays above 100 MeV, after the effects of absorption are

taken into account at all energies, is 2.8×10−9 photons cm−2 s−1. This is comfortably below

the upper limit for this galaxy imposed with EGRET data by Torres et al. (2004) in the

same energy range, which is about one order of magnitude larger. It is, however, above the

threshold for detection with GLAST: F (> 100 MeV) ∼ 2.4 × 10−9 photons cm−2s−1 is the

GLAST satellite sensitivity for a 5σ detection of a point-like, high latitude source after 1 yr

of all-sky survey. If this model bears resemblance with reality, then, it might be possible for

GLAST to detect Arp 220 for the first time in γ-rays.

By the same token, the total predicted fluxes in γ-rays above 300 GeV and 1 TeV are

2.2×10−12 photons cm−2 s−1 and 7.5×10−13 photons cm−2 s−1, respectively. These fluxes are

high enough as to render possible, again of course in the case this model bears resemblance

with reality, to detect Arp 220 at higher energies. The result at the highest energies, it is
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Fig. 13.— Fluxes with and without absorption processes being considered. Appreciable

differences appear only at the highest energies.

worth recalling, is based on parameterizations of the differential cross section of pion decay

that are extrapolated upwards, to regions in which there is no experimental data. Reliability

of the flux predictions above 1 TeV depends on the cross section modelling being reasonably

correct.

Čherenkov telescopes cannot typically observe at zenith angles much larger than 70◦.
The zenith angle ϑ at the upper culmination of an astronomical object depends on the lati-

tude φ of the observatory and the declination DEC of the object according to ϑ = |φ−DEC|.
Therefore, the condition |φ − DEC| ≤ 70o has to be imposed in the selection of observable

objects. For the next generation (but already operating) Čherenkov telescopes and because

of location, Arp 220 seems to be a good candidate for a northern hemisphere observatory

[e.g. MAGIC has ϑ ∼ 5.5o; VERITAS has ϑ ∼ 9o]. However, it seems also possible (see

Petry 2001) for HESS to observe Arp 220 at high zenith angles, since DECArp220 < +37o

implying ϑ < 60o.

As a function of ϑ, an increase in effective collection area is accompanied by a propor-

tional increase in hadronic background rate, such that the gain in flux sensitivity is therefore

only the square-root of the gain in area (Petry 2001). In addition, the higher the value

of ϑ, the higher is the energy threshold for observation, what reduces the integral flux. If
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F5σ(E > Ethr) is defined as the integral flux above the energy threshold Ethr which results in a

5σ detection after 50 h of observation time, F5σ(E > Ethr(ϑ), ϑ) = F5σ(E > Ethr, 0
◦) · cos(ϑ).

The needed observation time to observe a source with flux F5σ(E > Ethr) can be conserva-

tively estimated as (Petry 2001) T5σ(E > Ethr) = (F (E > Ethr)/F5σ(E > Ethr))
−2 50 hours.

In the case of the modelling herein presented for Arp 220, assuming a generic, but conser-

vative, F5σ(E > E300GeV, 0◦) = 3× 10−12 photons cm−2, the needed observation time for the

galaxy to appear above 300 GeV is about 95 hours.

Finally, note that the decay of charged pions will also lead to the production of energetic

neutrinos. While the analysis of the neutrino production and possible observability of Arp

220 by the future neutrino telescopes is left to a subsequent publication, we note that the

flux of neutrinos that is outcome of this model would not violate the upper limits imposed

by the AMANDA II experiment (Ahrens et al. 2004). Even if the neutrino flux from Arp

220, is the same as the photon flux, it would be below imposed upper limits to the fluxes

from all candidate neutrino sources.

7. Concluding remarks

Luminous infrared galaxies are certainly interesting objects, and until recently, focus on

them have been mainly granted at all wavelengths but one, the high energy domain. With

several new Čerenkov telescopes, γ-ray satellites, cosmic ray, and neutrino observatories on

the verge of becoming operational, or operating already, the interest on the possible high

energy features of LIRGs and ULIRGs has been rekindled. There is much to learn at high

energies, whether these galaxies are detected or not. Sensitivities of forthcoming equipments

is –as discussed above– high enough as to impose severe constraints on theoretical models

or provide interesting clues in our understanding of these objects.

Recently, ULIRGs have been analyzed as possible ultra high energy cosmic ray sources

(Smialkowski, Giller & Michalak 2002; Torres & Anchordoqui 2004), and yet unidentified

γ-ray detections (Torres et al. 2004; Torres 2004; Cillis et al. 2004). In this paper, a self-

consistent model for the radio, IR, and γ-ray emission from Arp 220, the prototypical and

nearest ULIRG, was presented. Complete agreement with observational data was obtained at

all frequencies, and predictions of γ-ray fluxes were obtained. These fluxes suggest that Arp

220 could be a source for GLAST as well the new Čerenkov telescopes. The radio emission

modelling of Arp 220, as the result of primary and secondary electrons’ synchrotron emission,

appear to indicate that the central regions of Arp 220 are subject to a strong magnetic field.

Although many are the free parameters involved in this modelling, few are those which
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Fig. 14.— Left: dependence of the steady state proton distribution on the proton injection

power law slope, p. Right: ratio between pion decay fluxes, in the western nuclei of Arp 220,

for different proton injection power law slopes.

are unrelated to observations, and even fewer are those which –if changing– may have a

significant impact on the results. Consider, as an example, the choice of the power slope for

the injected proton spectrum. The model presented assumed it to be 2.2 (i.e. Qinj ∝ E−2.2),

for all three Arp 220 components analyzed. However, there is nothing a priori yielding

to this value, except that it is a reasonable and conservative expectation for the slope of a

relativistic proton population in the vicinity of its acceleration site, e.g. a supernova remnant

shock. But perhaps, given that the western extreme starburst is the strongest site of star

formation known, the proton population might have there a harder spectrum, in particular,

as compared with that found in the disk. Figure 14 explores how a change in the injected

proton spectrum would affect the results. The left panel compares the steady state proton

distribution for a 2.2 (the previously assumed slope) and a 2.05 spectrum. Since the same

power is injected with a harder slope, the latter spectrum dominates at high energies. The

right panel shows that the ratio between –for instance– γ-ray fluxes produced in pion decays

in the western nucleus would not change much as a function of energy, although in the

direction of favoring the possible detection.

It is also interesting to note that the electron steady distribution, interacting via inverse
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Compton with the abundant IR photons, will also contribute to the flux at lower frequencies,

i.e. in the hard X-ray regime. Thus, a diffuse model for the high energy emission also needs

to yield fluxes in agreement with imposed upper limits at hard X-ray/soft γ-ray frequencies.

Dermer et al. (1997) found using OSSE that the photon flux is less than 1.2× 10−4 photons

cm−2 s−1, and 0.7 × 10−4 photons cm−2 s−1, in the 0.05–0.10 and 0.10–0.20 MeV bands,

respectively. The luminosity limit in the whole energy range mentioned is 3 × 1043 erg

s−1. Iwasawa et al. (1999) found using Beppo-Sax a luminosity upper limit of 5× 1040 and

1×1041 erg s−1 in the 0.5–2 and 2–10 keV bands, respectively. These are also consistent with

previously imposed ASCA limits, and stringent than those limits imposed using Chandra at

such hard X-ray energies. The model discussed in this work yields inverse Compton fluxes of

a few percent or less than the mentioned upper limits at these energies. Moran et al. (1999)

found, although with a less detailed modelling, a similar situation in the galaxy NGC 3256.

This is consistent with the hard X-ray/soft γ-ray emission being mostly generated not by

diffuse processes, but by several powerful point sources, which is also the case, according to

recent INTEGRAL observations (Lebrun et al. 2004), in our Galactic Center.

In closing, three remarks are deemed important to keep in mind when analyzing possible

observations of Arp 220 and other LIRGs a) Additional hadronic production of high energy

γ-rays with matter in the winds of stars (Romero & Torres 2003; Torres et al. 2003), and

emission from particular stellar systems in general (e.g., Romero et al. 1999) was herein

disregarded, and although subdominant, it would certainly help in increasing the γ-ray

emission at the highest energies. b) Only non-variable γ-ray sources can be ascribed to LIGs

if diffusive process such as the one explored in this work are responsible for the emission.

Variability indices (Torres et al. 2001, Nolan et al. 2003) could then help in discriminating

unidentified detections. c) The small redshift of Arp 220 and other galaxies in the 100

Mpc sphere makes opacities due to processes with photons of the cosmic microwave and

IR background outside the galaxy negligible below 10 TeV (see, e.g., figure 2 of Aharonian

2001).
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Appendix: Explicit formulae and some details of implementation

A : Proton losses

Proton losses are produced mainly by ionization and, at higher energies, by pion produc-

tion (e.g., Guinzburg & Syrovatskii 1964, p.120ff, Mannheim & Schlickeiser 1994). Collisions

with stars and dust, synchrotron proton emission, Coulomb, photo-pair, and photo-hadron

processes play a much subdominant role in the absorption of proton CRs under the global

scenario studied, and are not considered.

During the motion of a proton through a neutral medium, the ionization loss rate is

given by (e.g., Guinzburg & Syrovatskii 1964, p.120ff)

−
(

dE

dt

)

Ion,p

=
∑

j

4πe4nj

mv

{
ln

[
2mv2

Ij

(
E

mpc2

)2
]
− v2

c2

}

∼ 1.83× 10−17

(
nH + 2nH2

cm3

)
c

v

{
10.9 + 2 ln

(
E

mpc2

)
+ ln

(
v2

c2

)
− v2

c2

}
GeV s−1, (17)

where v is the velocity of the CR, e and m are the charge and mass of an electron, Ij is

the mean ionization energy of the species j (I ∼ 15 eV for hydrogen and ∼ 41.5 eV for

helium), and nj is the concentration of j-atomic electrons. In units of c, the velocity is

β =
(
1− Γp

−2
)1/2

—with Γp = Ep/mpc
2—. The numerical factors results in assuming a

medium composed of hydrogen and helium in a ratio 10:1. For extremely energetic protons,

such that E À (mp/m)mpc
2 ∼ 2 TeV, the ionization losses expression changes to take into

account that a proton can transfer all its energy to the electron

−
(

dE

dt

)

Ion,p

=
∑

j

2πe4nj

mc

{
ln

[
2mc2

I2
j

(
E3

m2
pc

4

)]
− 2

}

∼ 9.17× 10−18

(
nH + 2nH2

cm3

){
19.22 + 3 ln

(
E

mpc2

)
+ ln

(mp

m

)}
GeV s−1. (18)

Ionization losses are commonly given using the medium grammage. This can be reached by

dividing the previous expressions by c, so that losses are given in units of GeV cm−1, and

then, using the Avogadro’s conversion, by multiplying the latter by 6×1023/n, so that losses

(in hydrogen) are given in units of GeV g−1 cm2, or GeV per unit of hydrogen grammage,

where n is the hydrogen number density.

The energy loss by pion production is given as (Mannheim and Schlickeiser 1994, Schlick-

eiser 2002, p. 125 and 138)

−
(

dE

dt

)

Pion,p

=

∫ Eπmax

0

dEπP (Eπ, Ep), (19)
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where, P (Eπ, Ep) is the pion power of a relativistic proton with total energy Ep = Γpmpc
2,

and it is given by P (Eπ, Ep) = 1.3 n c Eπ ξ(Ep) σpp δ(Eπ− Ēπ) Θ(Ep−Eth). Here, δ(Eπ− Ēπ)

stands for the δ-function between the energy Eπ and the mean energy of the produced pion.

Θ(Ep−Eth) is a Heaviside step-function which ensures that the energy is above the threshold

energy of the reaction, Eth = 1.22 GeV. The factor ξ(Ep) is the pion multiplicity, which up

to protons energies of 104 GeV, can be approximated by an increasing power law

ξ(Ep)
π± ∼ 2

[
Ep − Eth

GeV

]1/4

and ξ(Ep)
π0 ∼ 1

2
ξ(Ep)

π± . (20)

In any case, the way in which the energy is distributed onto pions during the hadronic

interaction is not relevant for the total energy loss. The limiting value of the inelasticity is

1/2, i.e., a leading nucleon plus a pion cloud each carrying half of the incident total energy

leaves the interaction fireball. Then, the energy dependence of the mean pion energy is

Ēπ =
1

2

(Ep −mp c2)

ξ(Ep)
∼ 1

6
(Ep −mp c2)3/4. (21)

The cross section is approximated as σpp ∼ 30 mb. The error introduced here by assuming

a constant cross section through the whole energy range is only mildly (logarithmically)

dependent on energy. In any case, note that this approximation applies only to compute the

loss rate, not to compute actual pion emissivities, for which a more advanced treatment is

provided in Section 5. Finally, the factor 1.3 in the pion power corrects the hydrogen density

of the medium to account for heavier components (here n = n(H) + n(HII) + 2n(H2)). Eq.

(19), (20) and (21) then give (Mannheim and Schlickheiser 1994),

−
(

dE

dt

)

Pion,p

= 0.65 c n σpp (Ep −mp) Θ(Ep − Eth)

∼ 5.85× 10−16
( n

cm3

) (
Ep −mpc

2

GeV

)
Θ(Ep − Eth) GeV s−1. (22)

B : Electron losses

During their motion through the ISM, electrons are affected by ionization, bremsstrahlung,

Inverse Compton, and synchroton emission. The formulae used to compute these losses is

provided below, as it is implemented in the code. Through this Section, E represents the

electron energy Ee, and m stands for the electron mass.

In the ultrarelativistic case (E À mc2), the ionization losses in neutral atomic matter

(e.g., Schlickeiser 2002, p. 99; Guinzburg & Syrovatskii 1964, p. 140ff)

−
(

dE

dt

)

Ion,e

= (mc2)
9

4
cσT

∑
j

njZj

[
ln

(
E

mc2

)
+

2

3
ln

(
mc2

Ij

)]
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∼ 2.75× 10−17

[
6.85 + ln

(
E

mc2

)][
nH + 2nH2

cm−3

]
GeV s−1. (23)

Here, Ij is the effective ionization energy, equal to 15 eV for hydrogen and 41.5 eV for

helium, and the medium is assumed to contain these two elements in a ratio 10:1, i.e.,

(nH + 2nH2)/nHe = 1/10. Elements heavier than He contribute to the losses in less than 1%.

Synchrotron losses, occurring for electrons with energies E > mc2 moving in a magnetic

field B, can be computed as (e.g., Guinzburg & Syrovatskii 1964, p. 145ff; Blumenthal &

Gould 1970)

−
(

dE

dt

)

Sync,e

=
2

3
c

(
e2

mc2

)2

B2
⊥

(
E

mc2

)2

∼ 2.5× 10−6

(
B

Gauss

)2 (
E

GeV

)2

GeV s−1, (24)

where B⊥ represents the magnetic field in a direction perpendicular to the electron velocity,

and the second equality takes into account that an isotropic distribution of pitch angles. In

this case, particles velocities are distributed according to p(α)dα = [(1/2) sin α)]dα, with

α the angle between the particle’s velocity and B, varying between 0 and π. Then, as

B⊥ = B sin α, the average in Eq. (24) requires the integral
∫

[(1/2) sin α)] sin2 α dα = 2/3,

in order to go from B⊥ to B.

The losses produced by Inverse Compton emission are given by (e.g., Blumenthal &

Gould 1970)

−
(

dE

dt

)

IC,e

=

∫ ∞

0

dε

∫ Eγ
max

Eγ
min

dEγ Eγc nph(ε)
dσ(ε, Eγ, E)

dEγ

(25)

where nph(ε) is the target photon distribution (usually a black or a greybody), ε and Eγ are

the photon energies before and after the Compton collision, respectively, and dσ(ε, Eγ, E)/dEγ

is the Klein-Nishina differential cross section (Schlikeiser 2002, p. 82), dσ(ε, Eγ, E)/dEγ =

[3σT (mc2)2/4εE2]
[
2q ln q + (1 + 2q)(1− q) + (Cq)2(1−q)

2(1+Cq)

]
, where σT = 6.65×10−25 cm2 is the

Thomson cross section, C = 4εE/(mc2)2 is the Compton factor, and q = Eγ/[C(E − Eγ)].

From the kinematics of the scattering process, the range of q is restricted to (mc2)2/4E2 ≤ 1,

what means that, for fixed ε and E > mc2, Eγ is restricted to ε ≤ Eγ ≤ 4E2ε/((mc2)2+4εE),

which defines the limits of the integral in Eq. (25). Depending on the energy of the acceler-

ated electron and the photon target field, there are two different regimes for the Compton

losses; they are distinguished by the use of Thomson (C ¿ 1) or extreme Klein-Nishina

(C À 1) differential cross sections. When C ¿ 1, the Compton losses are given by (e.g.,

Guinzburg & Syrovatskii 1964, p. 144ff and 382ff, Longair 1994, p. 100ff)

−
(

dE

dt

)

IC,e

=
4

3
cσT Uph

(
E

mc2

)2

∼ 1.02× 10−16

(
Uph

eV / cm3

)(
E

GeV

)2

GeV s−1, (26)
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where Uph is the photon target energy density. When, on the contrary, C À 1 (e.g., in the

case of a target field of ε̄ ∼ 1 eV and an electron of Ee À 100 GeV), the Compton loses are

given by

−
(

dE

dt

)

IC,e

=
4

3

(
mc2

ε̄

)2

cUph

{
3

8
σT ln

(
2Eε̄

m2c4
+

1

2

)}

∼ 2.6× 10−12

(
Uph

eV / cm3

) ( ε̄

eV

)−2

ln

[
7.6× 10−3

(
E

GeV

) ( ε̄

eV

)]
GeV s−1. (27)

Here, ε̄ is the mean energy of the photon target field. In the extreme Klein-Nishina limit,

however, losses have not the same meaning as in the Thomson case. In the latter, in each

Compton collision the electron losses a small fraction of its energy, whereas for C À 1, the

relativistic electron losses its energy in discrete amounts which are a sizeable fraction of its

initial energy.

Additional losses are caused by the emission of bremsstrahlung γ-ray quanta in inter-

actions between electrons and atoms of the medium. Similar to the extreme Klein-Nishina

limit, the energy of the photon emitted by bremsstrahlung is of the order of the energy of

the incident electron. The energy loss can be computed as (e.g., Schlickeiser 2002, p. 95ff;

Guinzburg & Syrovatskii 1964, p. 143, Blumenthal & Gould 1970):

−
(

dE

dt

)

Brem,e

=

∫
dEγ Eγ

(
dN

dt dEγ

)
, (28)

where (dN/dt dEγ) = c
∑

j nj(dσj/dEγ) represents the number of photons emitted with

energy Eγ by a single electron of initial energy E in a medium with j different species

of corresponding densities nj, and where (dσj/dEγ) is the Bethe-Heitler differential cross

section,

dσj(Eγ, E)

dEγ

= Eγ
−1 3

8π
ασT

{[
1 +

(
1− Eγ

E

)2
]

φ1,j − 2

3

[
1− Eγ

E

]
φj,2

}
, (29)

with α = 1/137.037 being the fine structure constant, and φ1,2 being the scattering functions,

which depend on Eγ and E. Explicit expressions for the losses can be derived in two cases.

In the weak shielding regime, corresponding to low incident electron energies, where φi ∼
(Z2+Ze)φu, with φu = 4(ln(2(E/mc2)(E−Eγ)/Eγ)−1/2), and for an overall neutral plasma

(
∑

Ze =
∑

Z), the result is found to be, by integrating Eq. (28), equal to

−
(

dE

dt

)

Brem,e

=
3αcσT

2π
E

∑
Z

nZZ(Z + 1)

[
ln

(
2E

mc2

)
− 1

3

]
. (30)
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In the strong shielding regime, the φs are constants, and again integrating Eq. (28), the

result is

−
(

dE

dt

)

Brem,e

=
3αcσT

8π
E

∑
j

nj

(
4

3
φ1,j − 1

3
φ2,j

)
. (31)

Assuming a medium composed of hydrogen and helium in proportion 10:1, that the scattering

function are related by φHe 1,2/φH1,2 ∼ 3, and that dσH2/dEγ = 2dσH/dEγ, the sum is∑
j njdσ(Eγ, E)/dEγ ∼ 1.3 (nH+2nH2) (dσH(Eγ, E)/dEγ). This results, taking φ1,H ∼ φ2,H =

φH = 45, in

−
(

dE

dt

)

Brem,e

=
3.9× 45 αcσT

8π
E(nH + 2nH2). (32)

A useful parameter (∆) can be defined to decide which formulae is applicable to each sit-

uation. ∆ is given as a function of the incident electron and the emitted photon energies,

∆ = Eγmc2/(4αE(E − Eγ)). A weakly screened plasma corresponds to ∆ À 1, whereas a

totally screened plasma corresponds to ∆ ¿ 1. In intermediate cases, the fact that φ1 ∼ φ2

can still be used, as well as that the mean energy of the emitted electron is Eγ = E/2,

which corresponds to ∆ = mc2/(4αE). This allow an approximate solution to be obtained

(Blumenthal & Gould 1970). In the totally screened case, it is given by Eq. (32) but with

the replacement of the factor 45 by φ1,H(∆), whose values are tabulated for different values

of ∆ . 1 in Schlickeiser (2002), Table 4.1; the code interpolates between these values, as

needed.

For very high energy [(E/mc2)(ε̄/mc2) À 1] electrons, electron-positron pairs can be

generated in electron-photon interactions, e− + γ → e− + e+ + e−, and it usually referred

to as triplet photo-pair production (TPP). This process, then, is important whenever the

target-projectile configuration requires the use of the extreme Klein-Nishina limit to compute

Compton losses. Differently to the latter, TPP provides a source of secondary electron-

positron pairs that may initiate an electromagnetic cascade. However, as shown by Dermer

and Schlickeiser (1991), even when the energies involved may require the application of the

extreme Klein-Nishina case, in order for TPP losses to become comparable with the latter,

the Compton parameter needs to be C ∼ 105. For C < 103, TPP losses are more than 1

order of magnitude less than those produced under the extreme Klein-Nishina process. This

makes TPP losses negligible in the case under consideration.

C : Parameterizations of the differential cross sections for pion production

The spectral distribution as a function of incident proton kinetic energy in the lab frame

(Tlab) and the lab kinetic energy of the produced pion (Tπ) were recently parameterized by

Blattnig et al. (2000). The formulae used in the code, corresponding to the numerical inte-

gration of the LIDCS charged pion parameterizations due to Badhwar et al. (1977) and the
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neutral pion cross section due to Stephens and Badhwar (1981), are given in this Appendix.

These parameterizations are divided into two regions, corresponding to low (0.3 GeV to 2

GeV) and high (2 GeV to 50 GeV) laboratory kinetic energies (Tlab). The high end of the

parameterizations is defined by the energy up to which there were tested against experiments

by Blattnig et al. (2000); although use of them up to energies in excess of 50 GeV yields

to no unexpected behavior. The expression for the new Blattnig et al. parameterization

of the differential cross sections for neutral pion decay, was already given in Eq. (10). In

what follows, energies are given in units of GeV, as in the rest of the paper, and the spectral

distribution in units of mb GeV−1.

The neutral pion spectral distribution for the range 0.3 - 2 GeV is represented by (all

constants are given in Table 7):

F2 = A1T
A2
π + A3T

A4
lab

F1 = exp(A5 +
A6√
T lab

+ A7T
A8
lab + A9T

A10
π + A11T

A12
π )

(
dσ

dE

)

lab

= (A13
F1

F2

+ A14 exp(A16

√
Tπ + A17T

A18
π TA19

lab ))TA15,
π (33)

whereas at higher energies is

F2 = B1T
B2
π + B3T

B4
lab

F1 = exp(B5 +
B6√
T lab

+ B7T
B8
lab + B9T

B10
π + B11T

B12
π )

(
dσ

dE

)

lab

= B13T
B14
π

F1

F2

+ B15T
B16
π exp(B17

√
T π). (34)

These previous expressions (corresponding to a parameterization of Stephens and Badhwar’s

1981 results) were used for comparison only (actual results for neutral pion decay make use

of Eq. (10), which was found to be in better agreement with experimental data).

The positively charged pion spectral distribution for the range 0.3 - 2 GeV, used in the

code, is represented by (Blattnig et al. 2000):

F2 = C1T
C2
π + C3T

C4
lab

F1 = exp(C5 +
C6√
T lab

+ C7T
C8
lab + C9T

C10
π + C11T

C12
π TC13

lab + C14 ln Tlab)

(
dσ

dE

)

lab

= C15T
C16
π

F1

F2

+ C17T
C18
π exp(C19

√
Tπ + C20

√
Tlab), (35)

whereas at higher energies is

F2 = D1T
D2
π + D3T

D4
lab
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F1 = exp(D5 +
D6√
T lab

+ D7T
D8
π + D9T

D10
π )

(
dσ

dE

)

lab

= D11T
D12
π

F1

F2

+ D13T
D14
π exp(D15

√
Tπ + D16T

D17
lab ). (36)

The negatively charged pion spectral distribution for the range 0.3 - 2 GeV, used in the

code, is represented by (Blattnig et al. 2000):

F2 = G1T
G2
π + G3T

G4
lab

F1 = exp(G5 +
G6√
T lab

+ G7T
G8
π + G9T

G10
π )

(
dσ

dE

)

lab

= TG11
π (G12

F1

F2

+ G13 exp(G14

√
T π)) (37)

whereas at higher energies is

F2 = H1T
H2
π + H3T

H4
lab

F1 = exp(H5 +
H6√
T lab

+ H7T
H8
π + H9T

H10
π )

(
dσ

dE

)

lab

= H11T
H12
π

F1

F2

+ H13T
H14
π exp(H15

√
Tπ + H16T

H17
lab ). (38)

D : Leptonically-generated high energy radiation

The bremsstrahlung emissivity can be computed from the steady CR electron spectrum

as the integral

Qγ(Eγ)Brem = Eγ
−1

∫ ∞

Eγ

dEe Ne(Ee) PB(Eγ, E), (39)

where PB(Eγ, E) = Eγ(dN/dt dEγ) = cEγ

∑
j nj(dσj(Eγ, E)/dEγ) is the bremsstrahlung

power emitted by a single electron. Assuming again a medium composed of hydrogen and he-

lium in proportion 10:1, that the scattering function are related by φHe 1,2/φH1,2 ∼ 3, and that

dσH2/dEγ = 2dσH/dEγ, the sum is
∑

j njdσ(Eγ, E)/dEγ ∼ 1.3(nH + 2nH2)dσH(Eγ, E)/dEγ.

Finally, the integral (39) can be computed, within the strong shielding regime, (∆ ¿ 1,

E > 15 mc2/Z) where φH1,2 ∼ 45 as Qγ(Eγ)Brem = nEγ
−1

∫∞
Eγ

dEe cNe(Ee) σBrem, where

σBrem is the bremsstrahlung cross section, equal to 3.38 × 10−26 cm2, and n = (nH + 2nH2)

is the ISM atomic hydrogen density. If the spectrum of electrons is a power law of index p,

the bremsstrahlung spectrum is a power law with the same index.

The inverse Compton emissivity is given by (e.g. Blumenthal & Gould 1970)

Qγ(Eγ)IC =

∫ ∞

0

nph(ε)dε

∫ Emax

Emin

dσ(Eγ, ε, Ee)

dEγ

cNe(Ee)dEe . (40)
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The total number of photons per unit volume in the target field and their mean energy

density are given by nph =
∫

nph(ε)dε, and ε̄ =
∫

ε nph(ε)dε/nph, respectively. Emax is the

maximum electron energy for which the distribution Ne(Ee) is valid. Emin is the minimum

electron energy needed to generate a photon of energy Eγ, i.e. Emin = (Eγ/2)[1 + (1 +

(mc2)2/εEγ)
1/2].910

E : Synchrotron emission

The synchrotron radiation of a population of relativistic electrons and positrons is com-

puted starting from the energy emitted per unit time per unit frequency interval, as a

function of frequency, which is given by (e.g., Kembhavi & Narlikar 1999, p. 34) P (E, ν) =√
3(eB) sin α F (ν/νc)(e

2/mc2). Here, in convenient units, νc = 3eB sin α (E/mc2)2/(4πmc) =

16.1(B sin α/µGauss)(E/GeV)2 MHz is the critical frequency, and F (x) = x
∫

x

∞
K5/3(ξ)dξ,

with K5/3 being the modified Bessel function of order 5/3. The power emitted by all elec-

trons, units of GeV s−1 cm−3 Hz−1 sr−1, is εSync(ν) = (1/4π)
∫

dE N(E) P (E, ν). Then, the

synchrotron emissivity can be written as

εSync(ν) = 1.166× 10−20

(
B

Gauss

) ∫
dE N(E)

∫

0

π/2

dα
ν

νc

sin2 α

∫ ∞

ν/νc

dξK5/3(ξ)

GeV s−1 cm−3 Hz−1 sr−1. (43)

A useful result, see below, is given by the product of εSync and V/D2, fSync(ν). This is

the synchrotron flux density (units of Jy) expected from a region of volume V located at a

distance D in cases in which opacities are negligible, see below. If B is measured in Gauss,

9A fixed Emax implies that, for a given resulting upscattered photon energy, there is also a minimum
energy for the photon targets in the first integral of the IC flux. Target photons with less than this energy
do not contribute to the flux at the upscattered energy in question.

10When dσ(Eγ , ε, Ee)/dEγ is given by its Thomson expression, i.e., when the Compton parameter is C ¿ 1,

dσ(Eγ , ε, Ee)
dEγ

=
πr2

e(mc2)4

4ε2E3
e

{
2Eγ

Ee
− (mc2)2Eγ

2

εE3
e

+
4Eγ

Ee
ln

(
(mc2)2Eγ

4εE2

)
+

8εEe

(mc2)2

}
, (41)

the electron spectrum is a power law (Ne(Ee) = BEe
−p), and the target photon distribution nph(ε) is a

blackbody, an analytical expression for Qγ(Eγ)IC can be obtained (see e.g. Stecker 1977, Guinzburg &
Syrovatskii 1964, p. 393). The result is

Qγ(Eγ)IC = f(Γ)
2cσT Uph(mc2)1−p

3

(
4
3
ε̄

)(p−3)/2

BE−(p+1)/2
γ (42)

where f(Γ) is a slowly-varying, analytically defined, numerical correction factor which depends only on the
slope of the electron spectrum: f(2) = 0.86, f(3) = 0.99. This is not true if the photon density or the
electron distribution have a more complex expression.
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and units of distance, time, and energy are as in the rest of the paper cm, s, and GeV,

respectively, the synchrotron flux density in Jy is given by

fSync(ν) = 1.868

(
B

Gauss

)(
V/D2

cm

) ∫
dE N(E)

∫

0

π/2

dα
ν

νc

sin2 α

∫ ∞

ν/νc

dξK5/3(ξ) Jy. (44)

In cases where opacities are not negligible, one has to solve first for the specific intensity

considering all absorption processes, compute the emissivity, and then consider the geometry

through the factor [ΩL]obs. We give details on this below.

F : Free-free emission and absorption

The radiation due to the deflection of a charge in a Coulomb field of another charge in

a plasma is known as free-free emission or thermal bremsstrahlung, and contributes to the

continuum radiation at cm-wavelengths. The emission (εff) and absorbtion coefficients (κff)

for this process are given by (e.g., Rybicki & Lightman 1979, Ch. 5, Schlickeiser 2002, Ch.

6)

εff(ν) = 3.37× 10−36Z2
(
neni/cm

−6
)
(T/K)−1/2 (ν/GHz)−0.1 e−hν/kT ×

GeV cm−3 s−1 Hz−1 sr−1 (45)

κff(ν) = 2.665× 10−20Z2 (T/K)−1.35 (
neni/cm

−6
)
(ν/GHz)−2.1 cm−1, (46)

respectively. Here, the plasma is described by a temperature T , metallicity Z and thermal

electron and ion densities ne and ni, respectively. The free-free opacity is given by τff ≡∫∞
0

dr κff ∼ 8.235 × 10−2 (T/K)−1.35 (ν/GHz)−2.1 (EM/cm−6 pc) , where EM is the emission

measure, defined as EM=
∫∞
0

dr nine. For simplicity, and in lack of other knowledge, it is

assumed that the EM is constant. The turnover frequency νt (for frequencies less than νt

the emission is optically thick) can also be given in terms of EM, νt = 0.3[(T/K)−1.35EM]1/2

GHz. Again, an useful quantity is fff(ν) = εff(ν)(V/D2).

Given the EM, the temperature, and the size of the emitting region, the free-free emission

is completely specified. In what follows these emissivities are transformed by taking into

account the absorption process, this finally yields to the predicted observed fluxes.

G : Radiation transport equation, and fluxes from emissivities

The predicted total continuum emission, in any wavelength, is obtained using the equa-

tion of radiation transport. In particular, this paper analyzes the case in which emission and

absorption are uniform, co-spatial, and without further background or foreground sources or

sinks (see, e.g., Appendix A in Schlickeiser 2002). The solution to the radiation transport

equation in these situations is

Iν =
εν

κν

(1− e−τν ), (47)
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where εν is the emission coefficient –or emissivity–, κν is the absorption coefficient, and

τν = κνL is the opacity in the far end (L) of the emission region (also referred to as the

maximum opacity). In cases in which there are more than one process involved in the

emission or in the absorption, a sum over processes must be performed, i.e. εν →
∑

j εj
ν ,

κν →
∑

j κj
ν , and τν →

∑
j τ j

ν . Units are consistent with the rest of the paper, such that

[εν ] = GeV cm−3 s−1 sr−1 Hz−1 (in the case of γ-rays, photon emissivities are used instead,

Q/4π, with units of photons cm−3 s−1 sr−1 GeV−1), [κν ] =cm−1, and [τ ] = 1. Additionally,

Iν is the emergent intensity ([Iν ] =GeV cm−2 s−1 sr−1) after the absorption processes are

considered.

Consider first the case in which opacities are negligible. To compute the flux, given the

knowledge of its emissivity under a particular process, information on the solid angle -as seen

from the observer- (Ω) and depth (L) along the line of sight, or volume and distance of the

region of emission is needed. For instance, the integral flux of γ-rays, with no absorption, is

given by

Fγ(Eγ > E) =

∫ ∞

E

Qγ(Eγ)
[ΩL]obs

4π
dEγ =

V

4πD2

∫ ∞

E

Qγ(Eγ)dEγ, (48)

where Qγ(Eγ) = Qγ(Eγ)Brem + Qγ(Eγ)IC + Qγ(Eγ)π0 is the total γ-ray emissivity, and

[ΩL]obs/4π corrects for the fraction of the emission which is in the direction of the observer.

Clearly, in this case, the differential photon flux is Fγ(Eγ) = [V/4πD2]Qγ(Eγ).

The second equality in the previous equation is obtained as follows. With θ representing

the deviation from the line of sight to the center of the emission region, the flux is then

expressed as

F =

∫
I[cos θ] dΩ (49)

=

∫ 2π

0

∫ θmax

0

ε [2R cos θ′] [cos θ][sin θ] dθ dφ. (50)

Here, [2R cos θ′] is the lineal size of the sphere at an angle θ′ from its center (the size in

the direction of the observer), and I is the specific intensity of the source. Using the sin

theorem, sin θ′ = [D/R] sin θ, and thus cos θ′ = {1 − [D/R]2 sin2 θ}1/2. Integrating the

previous expression yields to the result F = 2πε(2R){−(R/D)2(1/3)[1 − D2 sin2 θ/R2]3/2},
which, evaluated between 0 and θmax, and taking into account that sin θmax = R/D, reduces

the flux to F = εV/D2. Note that an essential point is that ε was assumed independent of

position, and that I = ε × linear size was used. In the case of a molecular disk, the linear

size in the direction of the observer is assumed constant; i.e. for a disk with inclination

from face-on equal to i, and height h, it is h/ cos i. Thus, if the disk has a radius R,

[ΩL]obs = (h/ cos i) × ∆Â, where ∆Â = (πR2) cos i/D2 is the projected area of the source,
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perpendicular to the line of sight. Thus the the same factor is recovered to transform from

emissivities to fluxes.

When there are absorption processes involved, but the geometry is such that I is not

depending on the position within the emitting region, i.e., when both emission and absorption

coefficients are uniform and the maximum value of τ is the same for all the region11, the flux

can be computed (using Eqs. (47), (49) and the definition of τ) as

Fν =
εν

τν

(1− e−τν )
V

D2
≡ εν

V

D2
f1. (51)

However, in the case of an sphere, for example, even when emission and absorption are

uniform, the specific intensity is not. Following Eq. (47), one can see that, because the

linear size is different at different angles θ′ as measured from the center of the sphere, the

opacity will also change. This change can be represented as τν = κν × 2R cos θ′ = τmax cos θ′,
i.e. through the use of the maximum opacity τmax affecting a photon equatorially traversing

the system. τmax is also a function of the frequency, although the subindex ν is omitted for

simplicity. The flux, again given by Eq. (49), will be

F =

∫
I[cos θ] dΩ =

∫
εν

κν

(1− e−τν(θ′)) 2π cos θ sin θ dθ

=
εν

κν

2π

∫ θmax

0

(
1− eτmax

√
1−(D/R)2 sin θ

)
cos θ sin θdθ. (52)

The solution to this integral can be analytically obtained and after some algebra the result

can be written as

F =
εν

τmax

V

D2

[
3

2
+

3

τ 2
max

(
(1 + τmax)e

−τmax − 1
)] ≡ εν

V

D2
f2. (53)

Note that when τmax ¿ 1 the previous result reduces to the case of no absorption, f2 = 1.

Figure 15 shows the behavior of the correction factors for absorption that appear in the

different contexts analyzed in this paper, f1 and f2.

Dust emission

We assume that the dust photon emissivity, which dominates the luminosity at micron-

frequencies, is given by qd = q0ε
σB(ε, T ), where σ ∼ 1 − 2 is the emissivity index, B(ε, T )

is the Planck function of temperature T , B(ε, T ) = 2ε3/[(hc)2(exp(ε/kT )− 1)], and ε is the

11In the case of a uniform absorption coefficient this imposes a constraint on the geometry. For example,
in the case of a molecular disk, the linear size in the direction of the observer may be considered the same,
and thus τ is independent of any angle, and so is I. Thus, in this case, Eq. (51) applies.
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Fig. 15.— Correction factors for absorption. The f2/f1 curve asymptotically tends to 1.5,

but present differences of a few percent at low opacities.

photon energy (see, e.g., Rice et al. 1988; Goldshmidt and Rephaeli 1995; Krügel 2003,

p.245). Units correspond to [qd] = photons s−1 cm−2. Then, the flux produced by dust

can be computed as F = 2π
∫ π/2

0
qd cos θ sin θdθdε = π

∫
qddε and normalized to [L/4πR2],

with L and R being the IR luminosity and radius of the emitting region, respectively; i.e.,

normalized to the power per unit area through the surface of the emitting region. This fixes

the dimensional constant to q0 = [L/4πR2][hc]2[2π]−1[(kT )4+σΓ(4 + σ)Z(4 + σ)]−1, where Γ

and Z are the Gamma and Zeta functions. Units are such that [q0] = GeV−1−σ s−1, and

[B(ε, T )] = GeV cm−2.

The flux density of dust emission at the surface of the emitting region is obtained from

the definition F ≡ ∫
fdust(ν)dν, where units are, for consistency, [fdust] = s−1 cm−2 Hz−1

GeV. At a distance D, it is then given by

fdust = h
L

4πR2

1

(kT )4+σΓ(4 + σ)Z(4 + σ)

(hν)3+σ

exp(hν/kT )− 1

R2

D2
, (54)

i.e., it is diluted by the last factor in the previous equation. Note that fdust is completely

specified given T , L, R, and σ.

The IR photon number density per unit energy, n(ε), can be obtained by equating the

particle flux outgoing the emission region, πR2cn(ε)εdε, with the expression of the same



– 51 –

quantity that make use of the emissivity law, 4πR2πq(ε)dε. This results in

n(ε) =
L

πR2c

1

(kT )4+σΓ(4 + σ)Z(4 + σ)

ε2+σ

exp(ε/kT )− 1
(55)

When σ = 0, the photon distribution is known as a pure graybody, also knows as a dilute

blackbody: it has the same energy dependence than the latter but the photon number density

is smaller by the dilution factor [L/πR2c]15(~c)3/(π2(kT )4). The total photon density per

unit energy may contain contributions of one or several graybodies (e.g. a cool and a warm

component are needed to fit typical emission profiles in the IRAS band, Rodriguez-Espinosa

et al. 1996) plus the undiluted CMB bath, n(ε) = (π2(~c)3)−1ε2/(exp(ε/kT )− 1). It is with

this total photon density that inverse Compton processes are computed.
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